39 research outputs found

    Wideband Self-Adaptive RF Cancellation Circuit for Full-Duplex Radio: Operating Principle and Measurements

    Full text link
    This paper presents a novel RF circuit architecture for self-interference cancellation in inband full-duplex radio transceivers. The developed canceller is able to provide wideband cancellation with waveform bandwidths in the order of 100 MHz or beyond and contains also self-adaptive or self-healing features enabling automatic tracking of time-varying self-interference channel characteristics. In addition to architecture and operating principle descriptions, we also provide actual RF measurements at 2.4 GHz ISM band demonstrating the achievable cancellation levels with different bandwidths and when operating in different antenna configurations and under low-cost highly nonlinear power amplifier. In a very challenging example with a 100 MHz waveform bandwidth, around 41 dB total cancellation is obtained while the corresponding cancellation figure is close to 60 dB with the more conventional 20 MHz carrier bandwidth. Also, efficient tracking in time-varying reflection scenarios is demonstrated.Comment: 7 pages, to be presented in 2015 IEEE 81st Vehicular Technology Conferenc

    Digital transformation of healthcare sector. What is impeding adoption and continued usage of technology-driven innovations by end-users?

    Get PDF
    The digital transformation of businesses is no longer debatable, and the effects are visible in all sectors. What is arguable, however, is why the transformation has not been seamless—particularly given the multiple benefits of digitalization. We seek to address this question for the healthcare sector, where various reports have acknowl- edged end-users’ resistance to the adoption and continued usage of technology-driven innovations (e-health innovations). These accounts, though, are largely anecdotal, and the volume of academic research in the area has remained rather confined. To address this paucity of insights, particularly after the onset of the pandemic, which has brought the healthcare sector to the fore, we conducted a qualitative study among healthcare providers (doctors, nurses, and other clinical staff). The key objective of our study was to identify the perceived barriers and other inhibiting factors that impede individuals’ adoption and continued usage of e-health innovations. We conducted our study in the United Kingdom and analyzed the data using the classic approach of manual content analysis. Through these efforts, we identified barriers from the perspectives of healthcare providers (task-related, patient-care, and system barriers), healthcare organizations (threat perception and infrastructural barriers), patients (usability and resource barriers), and end-users in general (self-efficacy, tradition, and image barriers). Our study makes a noteworthy theoretical contribution by proposing a conceptual framework for resistance to e- health innovations that is grounded in innovation resistance theory (IRT). We also make some useful suggestions for practice that have the potential to accelerate the diffusion of e-health innovations

    Integrated Access and Backhaul in Millimeter-Wave Cellular : Benefits and Challenges

    Get PDF
    The recently proposed NR-ready integrated access and backhaul (IAB) architecture promises to bring a cost-efficient deployment solution for both coverage extension and capacity boosting in the emerging 5G/5G+ systems. While its impact on the coverage extension was thoroughly addressed in the literature, the effect of advanced functionalities such as multihop, multi-connectivity, and multi-beam operations on the throughput remained unclear. We review and characterize the system-level impact of these capabilities on the performance of self-backhauled IAB systems operating in half-duplex mode and utilizing millimeter-wave (mmWave) technology across both access and backhaul. Our results indicate that the throughput gain of multihopping and multi-beaming is significant even without multi-connectivity operation. Another important lesson is that in all-mmWave systems with link blockage, multi-connectivity with link switching allows achieving self-load balancing. Finally, we outline future research directions.acceptedVersionPeer reviewe

    Joint Path Selection and Resource Allocation in Multi-Hop mmWave-based IAB Systems

    Get PDF
    Recently proposed by 3GPP, Integrated Access and Backhaul (IAB) technology promises to deliver a cost-efficient and flexible solution for network densification in 5G/6G systems. Since IAB architecture is based on multi-hop topology and advanced functionalities, such as multi-connectivity transmission and multi-routing, the potential utilization of IAB systems raises an issue of efficient system design. In this paper, we develop an optimization framework capable of jointly selecting transmission paths and allocating radio resources in compliance with half-duplexing and interference constraints. The presented numerical results illustrate that directional mm Wave beams employed at the wireless backhaul are essential for capacity boosting, thus allowing to fully exploit the radio resources in self-backhauled systems. We also establish that the multi-hop IAB topology provides advantages in terms of end-to-end user throughput as compared to single-hop systems.Peer reviewe
    corecore